

PINEAPPLE AND CITRUS

Pineapple, citrus fruits and ethylene

Citrus and **pineapples** are **non-climacteric** fruits susceptible to different pathologies related to **air quality (ethylene, VOCs and fungal spores)** that reduce their postharvest life.

Ethylene effects

- Non-climacteric fruit; ethylene **stimulates senescence** (skin aging).
- Increased **risk of fungal infections** (degreened fruit).
- Increased ethylene production from rotten fruit.
- Aggravation of **chilling injury** as fruit is sensitive.
- Yellowing of green citrus (limes).

Ethylene effects

Low ethylene levels delay senescence of non-climacteric fruits and vegetables.

Postharvest life of late Valencia orange was 60% longer at < 0.005 ppm ethylene than at 0.1 ppm (80 days vs. 129).

High abscission enzyme activity predisposes oranges to *Diplodia natalensis* invasion during **degreening with ethylene.**

50 ppm and 2 ppm

Ethylene effects

UC Davis explicitly recommends **eliminating ethylene** during **transport and storage** to reduce the **degree of senescence and damage** in lemons, mandarins, pomegranates and pineapples.

COVs effects

- Microbial populations communicate with each other and with their hosts by emitting and detecting small diffusing compounds (gaseous signals).
- Evaluation of **volatile emissions** as a **language of communication** between plants and the environment is gaining increasing interest.

COVs effects

- Germination of *Penicillium digitatum* (green mold) spores is induced by the mixture of volatile limonene, acetaldehyde and ethanol produced by wounded orange peel.
- <u>Rodriguez et al (2011)</u> suggest that when limonene reaches a peak due to fruit ripening, it becomes a signal for attraction of pests (Ceratitis capitata) and pathogens (Penicillium digitatum and Xanthomonas citri) that facilitates access to the fruit for consumption and seed dispersal.

New product: BION CPB

- Formulation with enhanced activity against high molecular weight COV's such as limonene.
- Recommended for protection of citrus and pineapple during transport.
- Planned trials:
- - Penicillium spore retention evaluation.
- - Limonene and acetaldehyde absorption capacity tests.
- - Efficacy on pineapple

BION trials in citrus

The efficacy of **BION** in citrus has been demonstrated in different **independent trials and field tests.**

BION reduces:

- Rot caused by Penicillium sp.
- Respiration rate.
- Weight losses.
- Acidity losses.
- Yellowing in green citrus.
- Chilling injury in sensitive cultivars.

BION Trial: Tangerines

The effects of **BION** on the **disinfection of citrus chambers** were:

- Fortune and Hernandina mandarins (unwaxed, disinfected and with artificial wounds) were stored for 2 weeks in chambers at 3°C with and without the Ethylclean system. The evaluation was carried out after 7 days at 20°C under aseptic conditions.
- **BION reduced by 68%** the incidence of **rots** (Penicillium digitatum + p italicum) caused by environmental contamination in the chamber.

BION Trial: Tangerines

BION reduced the incidence of **rot (68%)** caused by environmental contamination inside the chamber.

Effect of Retarder equipment on the incidence of rotting caused by environmental contamination.

BION Trial: Oranges and Tangerines

Effects of **BION** on citrus fruit preservation IATA (1997):

- Clementines from Nules, Navelina Orange and Valencia Late Orange (unwaxed) were stored at 2-3°C for 8, 12 and 16 weeks respectively with and without Ethylclean.
- Significant reductions were obtained in:
- Rot in the 3 fruits and especially in oranges.
- Breathing rate in Navelina and Clementine.
- Loss of acidity in Navelina.
- Weight loss in Valencia Late

BION Trial: Navel orange

BION reduces acidity loss and rotting.

Navelina oranges stored 3,6,9 and 12 weeks at 2-3°C and then 20 days at 20°C.

BION Trial: Clementines

BION reduces respiration and rotting.

Clementines stored 3,6,9 and 12 weeks at 2-3°C and then 20 days at 20°C.

BION Trial: Valencia Late Orange

BION reduces weight loss and rotting

Valencia Late Oranges canned 4, 8, 12 and 16 weeks at 2-3°C and then 20 days at 20°C.

BION Trial: Lemon

BION reduces senescence and the incidence of rots.

Stored (days)	With BION	Without BION	Reduction of shrinkage
14	0,56	0,83	33%
28	1,14	1,96	42%
42	2,18	5,34	57%
56	4,94	11,42	59%

Waxed fruit. Chamber with 4 ETH 1500 machines; automatic ventilation systems disconnected to keep the air purified inside.

BION Trial: Pineapples

The efficacy of **BION** on pineapples has been demonstrated in different field studies and is supported by our experience.

BION reduces:

- Rot
- Weight loss
- Acidity
- Softening
- Yellowing
- **Cold damage** (internal blistering).

extending shelf-life

THANK YOU

